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Air and Space this Week 

Item of the Week 

The Mathematics of a Geostationary Orbit 

Originally appeared September 21, 2020 
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October 1 is the 75th anniversary of the publication of a paper by science (fiction) writer Arthur 
C. Clarke about placing communications relays in geostationary orbit in order to facilitate global 

“over the horizon” radio communications.  The mathematical description of a geostationary 
orbit, the theme of this Item, was derived from Newton’s and Kepler’s Laws literally centuries 

ago, but it was Clarke who first advocated for the exploitation of this valuable location in Space.  
[Clarke’s visionary foresight, however, did not extend to possible advances in electronics.  His 

relay satellites would be Space Stations, because they needed to house the dozens of technicians 
and their logistical support needed to maintain the thousands of vacuum tubes used in the 

relays!]  Today, much of our routine TV, radio, financial transactions, and more, depends on 
using relay satellites in geostationary orbits. 

This particular anniversary is a good chance to share with others the tremendous economic and 
quality-of-life advances, such as the exploitation of geosynchronous orbit enabled by NASA-

developed technology, have had for all of us.  I wanted to give you a review of the math behind 
geosynchronicity to help you with that conversation. 

     

Definitions:   

An object is in geosynchronous orbit around the Earth if its orbital period is equal to one day.  
From the ground, the satellite wouldn’t rise or set, but, depending on its orbit inclination and 
eccentricity, it would move around somewhat.  Accommodating such movement would make 
the receiver tracking system more complicated than if the satellite were In… 

A geostationary orbit around the Earth is both circular and in the plane of Earth’s Equator 
(called the Ecliptic Plane).  In such a case, the satellite appear from the  ground to remain in the 
same spot in the sky.  A receiving antenna on the ground would not have to move in order to 
send/receive signals from a geostationary satellite, greatly simplifying the antenna mounting 
and motion requirements. 

Approach: We will use Newton’s formulation for the (centripetal) force required to cause a 
satellite to have a circular orbit, and then find the orbit size that would allow for the satellite to 
be geostationary.  Along the way, we’ll derive Kepler’s Third Law, and see how to use it to 
determine masses of objects far from Earth. 

Start: The generalized equation for centripetal force associated with uniform circular motion is:  

Fcentripital = m x acentripetal = (m x v2)/r 

http://lakdiva.org/clarke/1945ww/
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where: m is the mass of the satellite 

v is the speed of the satellite and 

r is the radius of the circular orbit 

“x” will represent multiplication in this notation 

 

Since the centripetal force is due to Earth’s gravity, a la Newton: 

Fcentripetal = (G x M x m) / r2 

where: G is the Universal Gravitational Constant 

M is the mass of the Earth 

Equating the two: 

(m x v2) / r = (G x M x m) / r2 

Multiplying both sides by r and dividing both sides by m gives: 

v2 = (G x M) / r 

Now, let’s consider what v represents in a circular orbit.  The circumference of a circular orbit is 
the distance an orbiting satellite has to traverse to make one orbit: 

Circumference = 2 x  x r 

And the time it takes for that satellite to complete one orbit, the orbit period, P, a simple 
distance traveled versus speed situation, is: 

v = (2 x  x r) / P 

Square both sides: 

v2 = (4 x 2 x r2) / P2 

Equate the two expressions for v2 above:  

(G x M) / r = (4 x 2 x r2) / P2 

Multiply both sides by r: 

(G x M) = (4 x 2 x r3) / P2 

Multiply both sides by P2 and divide both sides by (G x M): 

P2 = ((4 x 2) / (G x M)) x r3 

This is Kepler’s Third Law, usually stated as “the square of the period of a satellite is 
proportional to the cube of the radius of its orbital radius.”  Recall that this is for a satellite in 
circular orbit.  The equation is valid for elliptical orbits, too, but instead of using r, the radius of 
a circular orbit, you’d use the ellipse’s semi-major axis.  The constant of proportionality is 
independent of all variables, except the mass of the Earth (or any body whose gravity is 

enabling the orbit), and is equal to: ((4 x 2) / (G x M)). 



3 
 

 
Copyright 2020 by Steven H. Williams 

Non-commercial educational use allowed 
 

This is an extraordinarily-powerful equation!  It allows us to not only calculate the height 
needed for a geostationary orbit, it also allows us to determine the mass of any object being 
orbited, be it exoplanet and star, planet and moon, etc.   

So, how high does an orbit have to be for the satellite to be geostationary? 

Let’s re-arrange Kepler’s Third Law and solve for r: 

Start with:  P2 = ((4 x 2) / (G x M)) x r3 from above 

Divide both sides by (4 x 2) and multiply both sides by (G x M): 

((G x M) / (4 x 2)) x P2 = r3 

Now take the cube root of both sides:  

r = cube root (((G x M) / (4 x 2)) x P2) 

G and M are known quantities, as is  All we need to do is to plug in a value for P and we can 
calculate the necessary orbit height.  But first, we have to realize two important things. 

1. The value of r is the height of the satellite above the center of the Earth, not the height 
of the satellite above the surface of the Earth.  To get that, the radius of the Earth below 
the satellite has to be subtracted from the value for r. 

2. There are two kinds of days: solar and sidereal.  The sidereal day is the time it takes for 
the Earth to turn once on its axis relative to the stars.  A solar day is the time it takes for 
the Earth to turn once on its axis PLUS a little bit more to accommodate the Earth’s 
movement around the Sun during that particular day.  The solar day is about four 
minutes longer than the sidereal day, but it’s the sidereal day’s length we have to use 
here. 

When all the values are plugged in, the height of a geosynchronous orbit is found to be ~35,786 
km (22,236 miles).  There is a slight variation due to the Earth not being a perfect sphere. 

The orbit mechanics described above has been known literally for centuries.  But it wasn’t until 
line-of-sight radio communications and rocketry developed sufficiently before we could 
contemplate launching to exploit this very special orbit, and it was Arthur Clarke leading the 
way.  His first papers on the topic date from 1945; the first geostationary orbit was achieved by 
Syncom 3 in 1964. 

This Wikipedia article has a good summary of geostationary orbit utilization.  And just to show 
you I leave no stone unturned in the search for good explanations, you can find a good synopsis 
of the calculations above here. 

But WAIT, there’s more! 

There is another way to re-arrange the equation from above:  

(m x v2) / r = (G x M x m) / r2 

Let’s solve for M, instead for r.  Divide both sides by m and multiply both sides by r: 

https://en.wikipedia.org/wiki/Solar_time
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1964-047A
https://en.wikipedia.org/wiki/Geostationary_orbit
https://nigerianscholars.com/tutorials/uniform-circular-motioin-gravitation/derivation-of-keplers-third-law-for-circular-orbits/
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v2 = (G x M) / r 

Recall from above that v = (2 x  x r) / P 

Square both sides: 

v2 = (4 x 2 x r2) / P2 

Equate both expressions for v2 and solve for M: 

((G x M) / r) = ((4 x 2 x r2) / P2) 

Multiply both sides by r: 

(G x M) = ((4 x 2 x r3) / P2) 

Divide both sides by G: 

M = (4 x 2 x r3) / (G x P2) 

This equation, too, is a powerful tool.  G and  are fundamental numbers, so if we can measure 
r and P for an orbiting system, then the old plug-and-chug yields the value for M.  Think about 
that for a moment. 

If we look at a moon orbiting a planet, the only things we need to know to determine the mass 
of that planet is the period of the moon’s orbit and the size of the orbit’s semi-major axis.  
That’s a straightforward measurement to make for objects within our Solar System, but it works 
for more distant objects, too (e.g. planets around other stars, and even a satellite galaxy around 
the galaxy it orbits). 

For example, if we can make detailed observations of a binary star, especially those where one 
star is much less-massive than the other, then the mass of the larger star can be calculated 
from movements of the smaller (the size and period of its orbit). 

And Yet More! 

Recall from above: 

v2 = (G x M) / r 

where v is the speed of the orbiting object (the magnitude of its velocity vector) 

G is the Universal Gravitational Constant 

M is the mass of the body being orbited, in this case the Earth 

 

Take the square root of both sides to isolate the orbital speed, v: 

      v = sqrt ((G x M) / r) 

 

Notice that the orbital speed, v, is a function of the radius of the orbit, r, and two physical 
constants, G and M.  Note also that this relationship is valid only for circular orbits. 
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Derivation of centripetal acceleration formula 

OK, what if we don’t start with being given an expression for centripetal force in uniform 
circular motion, in other words, how was the initial equation above derived: 

Fcentripital = m x acentripetal = (m x v2)/r 

where: m is the mass of the satellite 

v is the speed of the satellite and 

r is the radius of the circular orbit 

The derivation is best made using a diagram of the situation described below.  I’m going to use 
words instead, and give you a link for an explanation with diagram. 

Imagine an overhead view of an object in uniform circular motion.  The velocity vector of that 
object is always tangential to the orbit circle at the object’s location.  Its magnitude of the 
velocity vector (its speed) does not change as the object orbits, but the orientation of the 
vector does, since it is always tangent to the orbit at the object’s location.  We can perform a 
vector addition on the tangential vectors for the object at two different positions on the orbit, 
and end up with two triangles that are mathematically similar.  One would have the orbit center 
and the two object positions as its corner points.  The other would have the two velocity 
vectors, moved so that their origins are from the same point.  That triangles three corners are 
the ends of both velocity vectors and their common origin.  If we select a time, Δt, between the 
object being at the two positions short enough so that the object moved less than a quarter of 
the orbit’s circumference, it’ll be easier to visualize.  The two triangles resulting are isosceles 
and are mathematically similar – if the object went through 30° of its orbit, say, the angle 
between the two tangential speed vectors would also be 30°, since both vectors are 
perpendicular to their respective radius vectors.   

For the vector triangle, the vectors are straight, both tangent velocity vectors and their sum 
vector, Δv. For the position triangle, the two sides of the triangle adjacent to the 30° vertex are 
of length r, but the opposite side is an arc of the circle, of length v x Δt.   Because they are 
similar triangles, the ratio of their adjacent sides to the opposite side is the same: 

Δv / v = (v x Δt) / r 

This can be re-arranged as follows. Multiply both sides by v and divide both sides by Δt: 

Δv / Δt = v2 / r 

dv/dt is always an acceleration, in this case, the centripetal acceleration necessary for uniform 
circular motion: 

acentripetal = v2 / r 

Which is where we started, with Newton! 

I told you a diagram would be useful.  I have searched a number of sources, and the best I 
found was my old physics text: Halliday, David and Resnick, Robert, 1974, Fundamentals of 
Physics, revised printing, New York: John Wiley and Sons, section 4-4, page 48-49. I am certain 
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the text, but not the physics, has been superseded.  The best modern reference on this topic I 
found is: http://www.met.reading.ac.uk/pplato2/h-flap/phys2_6.html.  
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